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We provide explicit details to justify an assertion in this paper; namely, referring to the last paragraph
of the paper, we give an explicit proof that the number of epimorphisms λ′ is at least m.

Clearly λ(T ) = K̃/N , for any solution λ, and since T is open, the number of λ|T is m. Hence it suffices
to show the following assertion: the number of (σ̃|K̃/N )(λ|T ) is m (*).

Since (σ̃π)|K = idK, π|K is an injection; so abusing notation, we shall write π(K) as K again. Put

R = Ker(σ̃|K̃/N ); then K̃/N = R ×K = Rb × Kb, for all b ∈ B′. Note that R′ =
⋂

b∈B′ R
b is contained in

K̃/N and it is normal in A′/N = K̃/N × B′. Since σ̃(R′) = 1, to prove (*) we may assume that R′ = 1,
since we could replace A′/N by (A′/N )/R′. Making that assumption, the natural map K̃/N −→

∏
b∈B′ K

b

is an embedding as a subdirect product, i.e., each of the compositions ρb : K̃/N −→ ∏
b∈B′ K

b −→ Kb is
onto. Since B′ is finite, the number of compositions ρb(λ|T ) must be m for at least one b0 ∈ B ′. Finally,
since σ̃|Kb0 is injective, assertion (*) follows.
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